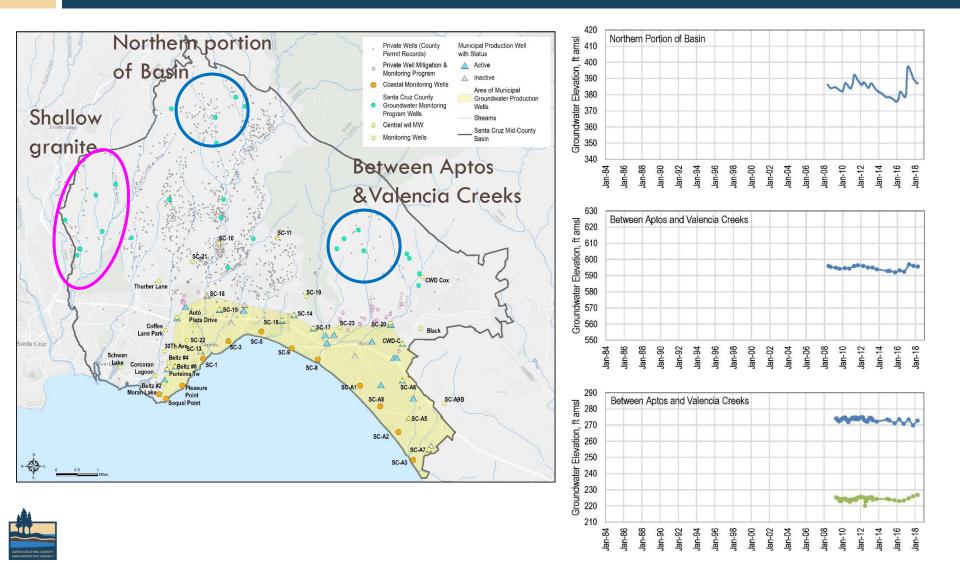
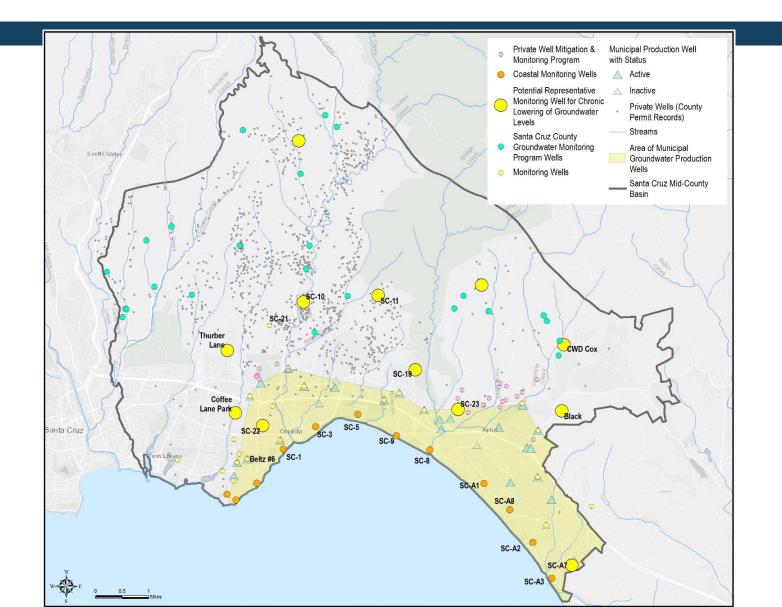

Chronic Lowering of Groundwater Levels

Historical Changes in Coastal Groundwater Elevations



SC-1A (A Unit) Groundwater Elevation ---- SC-9C (BC) Groundwater Elevation


Drought Period (by Water Year)

Annual Production (by Water Year)

Historical Changes in Private Well Groundwater Elevations

Potential Representative Monitoring Wells

Significant & Unreasonable Conditions

Chronic lowering of groundwater levels has potential to impact uses and users by:

- Inducing seawater intrusion.
- Reducing stream baseflow that supports groundwater dependent ecosystems & aquatic species by lowering groundwater levels beneath the streambed, or by reducing the hydraulic gradient and the rate of groundwater discharge to the stream.
- Reducing yield of wells by causing groundwater levels to drop below well screens or the bottom of wells. Users of groundwater in the basin are agriculture, domestic, and municipal, with few industrial users.

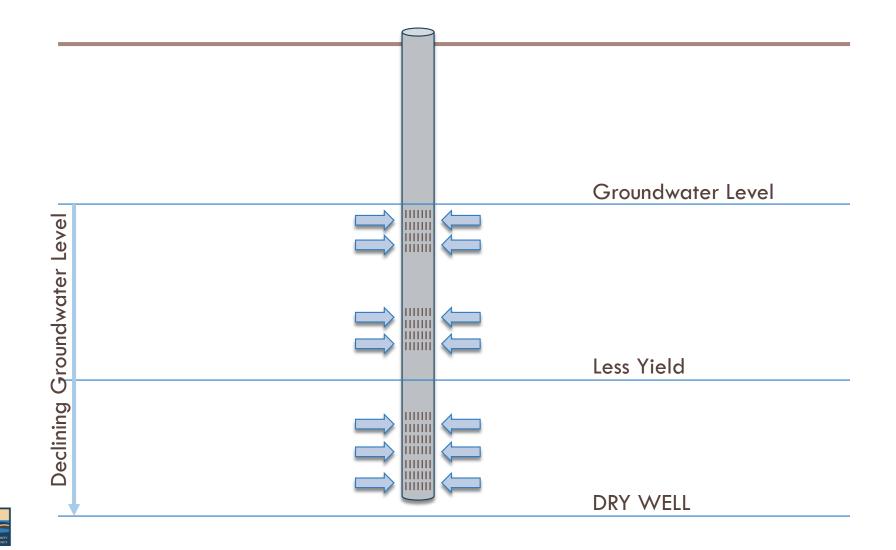
Significant & Unreasonable Chronic Lowering of Groundwater Levels

Key Variables: Lowering of groundwater levels that cause <percentage> or more of <well use type> groundwater pumping well's to <well condition>

<percentage>: this variable is dependent on <well condition>.

Fall below top of screen - could be a higher number of wells that can have levels fall below top of screen (e.g., 25% of wells)

Certain distance from bottom of well – e.g., 20 feet allows for some production capacity (e.g., 5% of wells, excludes very shallow wells)


Go dry – fewer wells should be allowed to go dry (e.g., 1% of wells)

<well use type>: Should there be a distinction between user types? (agricultural, domestic, industrial, municipal).

<well condition>: go dry (below bottom of well), a certain distance from the bottom of the well, or fall below top screen?

Impacts of Lowered Groundwater Levels on Wells

Significant & Unreasonable Chronic lowering of groundwater we want to avoid

Technical staff proposal:

Lowering of groundwater levels that cause <u>5%</u> or more of <u>all</u> groundwater pumping well's to fall below <u>20 feet</u> <u>from the bottom of wells</u>

RATIONALE: having groundwater levels fall below 20 feet from the bottom of a well is clearly significant and unreasonable. Groundwater levels falling below this depth will certainly reduce the wells' ability to pump groundwater. Groundwater levels falling below the top of well screens is not significant and unreasonable as it occurs commonly. A low percentage such as 5% covers the population of wells that are very shallow (< 100 feet).

and Selection of Significant & Unreasonable Chronic Lowering of Groundwater Level Conditions

Discussion

Significant & Unreasonable Chronic Lowering of Groundwater Levels

Key Variables: Lowering of groundwater levels that cause <percentage> or more of <well use type> groundwater pumping well's to <well condition>

<percentage>: this variable is dependent on <well condition>.

Fall below top of screen - could be a higher number of wells that can have levels fall below top of screen (e.g., 25% of wells)

Certain distance from bottom of well – e.g., 20 feet allows for some production capacity (e.g., 5% of wells excludes very shallow wells)

Go dry – fewer wells should be allowed to go dry (e.g., 1% of wells)

<well use type>: Should there be a distinction between user types? (agricultural, domestic, industrial, municipal).

<well condition>: go dry (below bottom of well), a certain distance from the bottom of the well, or fall below top screen?

Undesirable Results for

Chronic Lowering of Groundwater Elevations What set of conditions are significant & unreasonable

Key Variables: The <statistic> Representative Monitoring Well groundwater elevation over <time period> falls below the <Minimum Threshold>

<statistic>

- Minimum elevation measured. This absolute number makes it more difficult to stay above the Minimum Threshold and the more difficult it will be to avoid Undesirable Results (less flexibility)
- **75th Percentile** elevation measured. This statistic requires threequarters of the groundwater elevations to be above the Minimum Threshold, making it easier to be above the Minimum Threshold than using the minimum but more stringent than using average groundwater elevations
- Average elevation measured. This statistic allows for some groundwater levels to go below the Minimum Threshold, making it easier to exceed the threshold (more flexibility)

<time period>

- Monthly ⇒ data logger needed. More data to average
- Quarterly ⇒ data needs to be collected at least monthly
- One year ⇒ data needs to be collected at least quarterly

Ainimum Threshold>

- Numeric value set for every Representative Monitoring Well by technical staff
- The aim is to set the Minimum Threshold at a level that reflects what is considered a chronically lowered groundwater elevation. Levels below this level will cause impacts to a significant number of wells
- The lower the groundwater elevation set for Minimum Thresholds, the easier it will be to stay above the threshold, but there is a chance other wells may be impacted (more flexibility)
- The higher the groundwater elevation set for Minimum Thresholds, the more difficult it will be to stay above it and ultimately may cause undesirable results (less flexibility)

Undesirable Results Technical Staff Proposal

The <u>average</u> Representative Monitoring Well groundwater elevation over <u>one month</u> falls below the <Minimum Threshold>

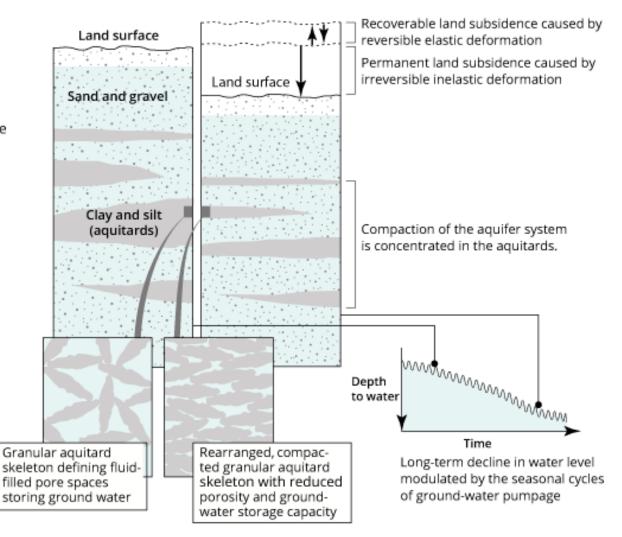
Rationale: monthly average will identify seasonal low levels

More flexibility in avoiding Undesirable Results: <u>average</u> elevation over <u>one year</u>

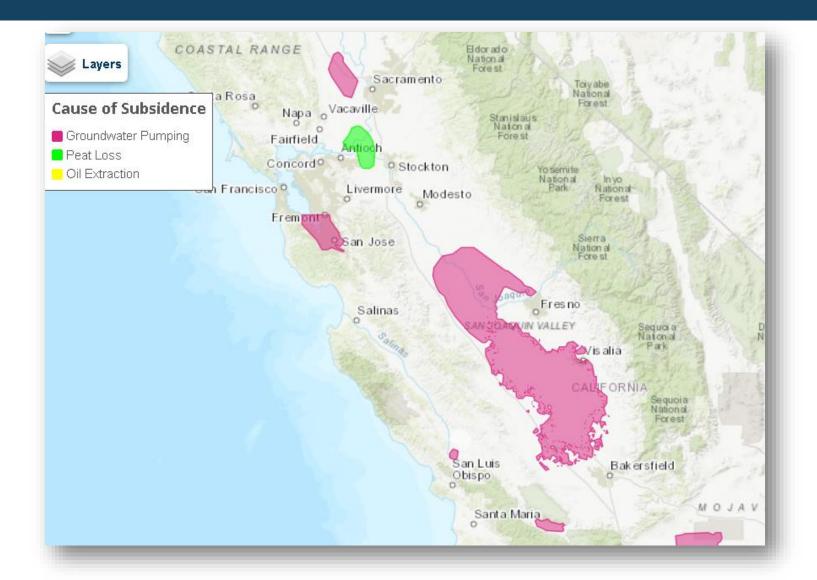
Less flexibility in avoiding Undesirable Results: <u>75th percentile</u> elevation over <u>one month</u>

Discussion and Selection of Undesirable Results for Chronic Lowering of **Groundwater Levels**

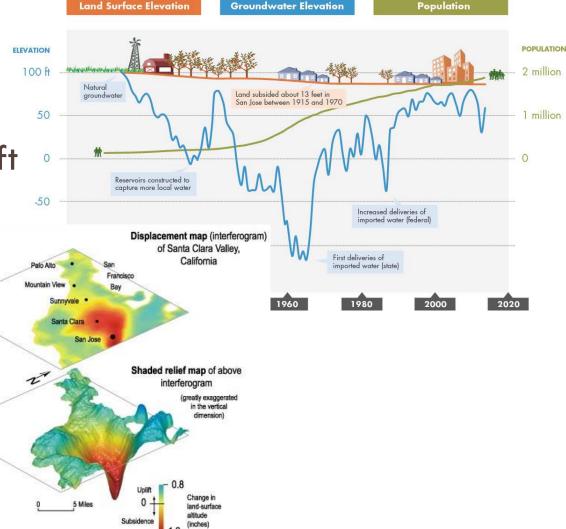
Land Subsidence


What is Land Subsidence

- Land subsidence is a gradual settling or sudden sinking of the Earth's surface owing to subsurface movement of earth materials.
- The principal causes are:
 - Aquifer-system compaction,
 - Drainage and decomposition of organic soils
 - Underground mining, oil and gas extraction, hydrocompaction, natural compaction, sinkholes, and thawing permafrost


Aquifer-System Compaction

When long-term pumping lowers groundwater levels and raises stresses on the aquitards beyond the preconsolidation-stress thresholds, the aquitards compact adn the land surface subsides permanently.


Nearby Documented Land Subsidence

Santa Clara Valley Land Subsidence

- Started in 1933
- Up to 8 feet of subsidence
- After 1992 some uplift occurred as groundwater levels recovered
- Currently, elastic subsidence that recovers seasonally

San Joaquin Valley Land Subsidence

Impacted area = $5,200 \text{ mi}^2$

Monitoring Land Subsidence

- Level surveying tied to known stable benchmarks;
- Borehole extensometers;
- Continuous GPS tracking; or
- Satellite derived Interferometric Synthetic Aperture Radar (InSAR) data

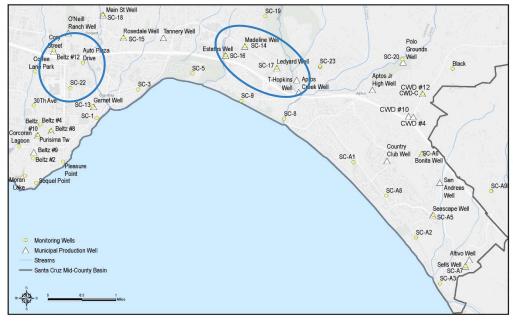
NONE OF THESE ARE CURRENTLY DONE IN THE BASIN

Effects of Land Subsidence

Manmade Infrastructure

- Changes to gradients of water conveyance structures causing reductions in designed flow capacity
- Damage to roads & railways
- Damage to bridges & buildings
- Damage to pipelines & wells
 - NONE OF THESE HAVE BEEN REPORTED IN THE BASIN

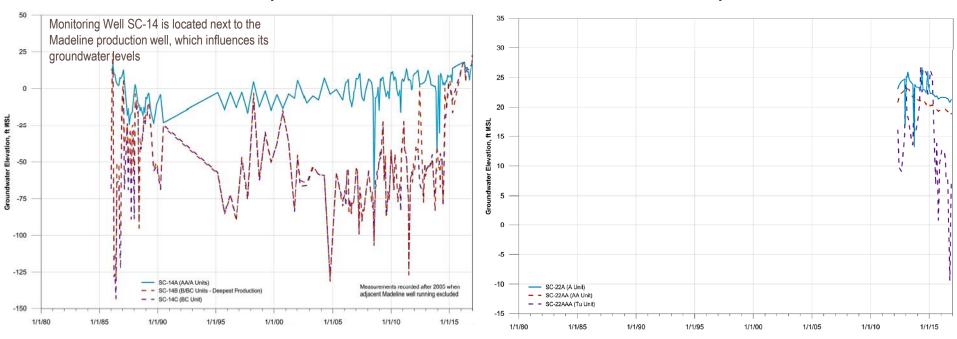
Natural Systems


- Permanently decreased capacity to store groundwater
- Topography changes, causing low areas, such as wetlands, to change size and shape, migrate to lower elevations, or disappear
- Rivers changing course or erosion/deposition patterns changing to reach a new equilibrium

Has any Subsidence Occurred during Historic Low Groundwater Levels?

Unit	Maximum Decline, feet	Year of Historic Low			
Aromas/Purisima F	5 (SC-A2A)	2000			
Purisima DEF	100 (SC-17C)	1988			
Purisima BC	140 (SC-14B)	1986			
Purisima A	80 (SC-16A)	1988			
Purisima AA/Tu	35 (SC-22AAA)	2017			

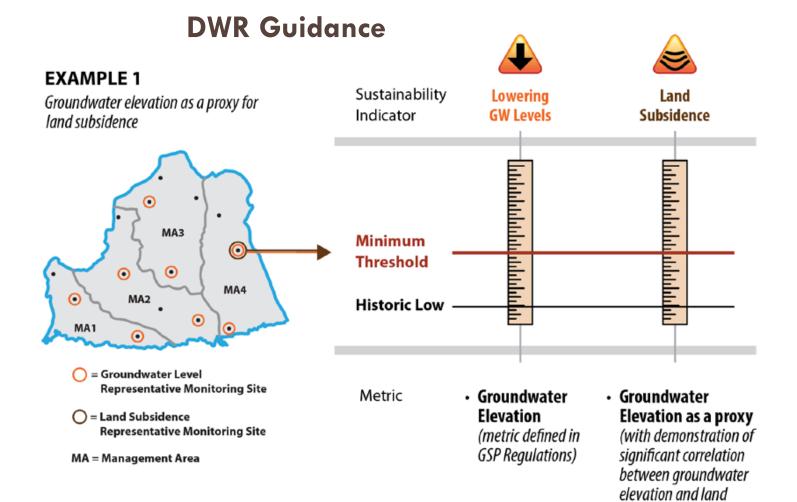
Areas of historic low groundwater levels > 50 feet



Historic Low Groundwater Levels

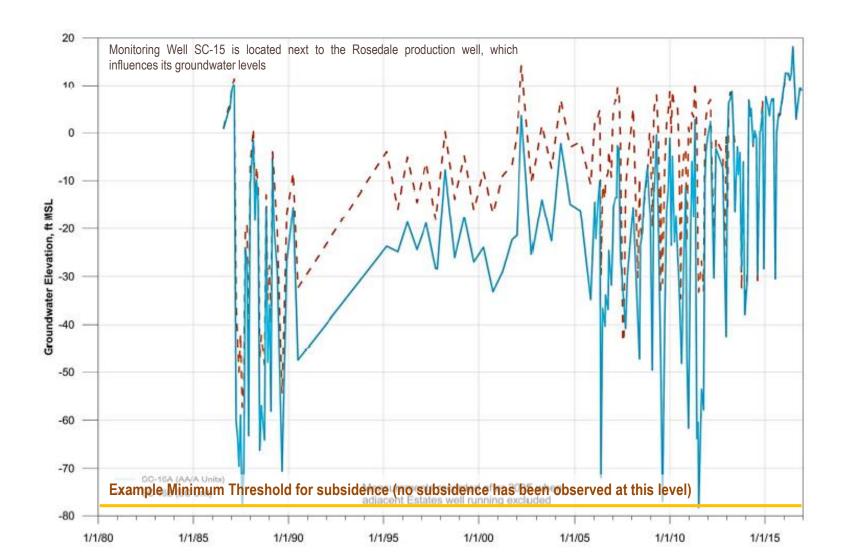
Purisima Aquifer

Tu Aquifer


More historical declines in groundwater levels

NO SUBSIDENCE EFFECTS OBSERVED More recent declines in groundwater levels

TOO SOON TO OBSERVE SUBSIDENCE EFFECTS


Groundwater Levels as a Proxy for Land Subsidence Minimum Thresholds

subsidence)

Groundwater Levels as a Proxy for Land Subsidence Minimum Thresholds

Subsidence conditions we want to avoid having

- Technical staff's proposal
- Any land subsidence occurring

Rationale: Based on historical lack of subsidence

Allow Some Subsidence

 Land subsidence occurring in developed areas only (ok if it occurs in undeveloped areas)

Note: Undeveloped areas are not likely to have changes in groundwater levels which could potentially cause subsidence

Discussion and Selection of Significant & Unreasonable Land Subsidence Conditions

Undesirable Results Proposed Metrics for Different Aquifers

Aromas Purisima A, BC, DEF

Groundwater Levels Use groundwater levels as a proxy for Subsidence

Groundwater Surface Elevation Use rate of change of land surface (inches/year)

Undesirable Results – Land Subsidence What set of conditions are significant & unreasonable?

Aromas, and Purisima A, BC, DEF Units

Use historic low groundwater levels at Representative Monitoring Wells in areas of greatest groundwater level fluctuations

Key Variables: <Number of wells > Representative Monitoring Wells in the Aromas and Purisima A, BC, and DEF units with <statistic> <time period> groundwater elevations below their <Minimum Threshold> in <extent>

Number of wells>

- More wells ⇒ easier to avoid Undesirable Results but higher risk of potential subsidence
- Less wells ⇒ less flexibility in avoiding Undesirable Results but lower risk of potential subsidence

<statistic>

- Average groundwater levels need to be below the <Minimum Threshold> for extended periods of time for there to be a risk of potential subsidence
- Certain percentile the more often a groundwater level is below the <Minimum Threshold> the greater the risk of potential subsidence

- <time period>
 - Quarterly
 - Annual
- Ainimum Threshold>
 - Historic low
 - An elevation either higher or lower than the historic low

□ <Extent>

This represents the area of subsidence concern

Undesirable Results in Aromas, Purisima A, BC, and DEF Units

Technical Staff's Proposal:

Any Representative Monitoring Well in the Aromas and Purisima A, BC, and DEF units with <u>average annual</u> groundwater elevations below their <u>historic lows</u> in <u>any part of the basin</u>

> **Rationale:** no subsidence occurred at historical lows. Staying above those lows will ensure land subsidence does not happen in the future

Discussion of

Use of Groundwater Level Proxy for Subsidence

Selection of Undesirable Results for Land Subsidence in <u>Aromas</u>, <u>Purisima A, BC and DEF units</u>

Undesirable Results – Land Subsidence What set of conditions are significant & unreasonable?

Purisima AA/Tu Units

Using Land Surface Elevation as the metric

Key Variables: <Rate of subsidence, inches per year> occurring in <extent>

- <Rate of subsidence>
 - Higher rate ⇒ easier to avoid Undesirable Results but higher risk of subsidence
 - Lower rate ⇒ less flexibility in avoiding Undesirable Results but lower risk of subsidence

<Extent>

■ This should represent the area of subsidence concern

Undesirable Results in Purisima AA/Tu Using Land Surface Elevation as the metric

Technical Staff's Proposal:

Any land subsidence occurring in the area where the Purisima AA/Tu unit is being pumped or injected into

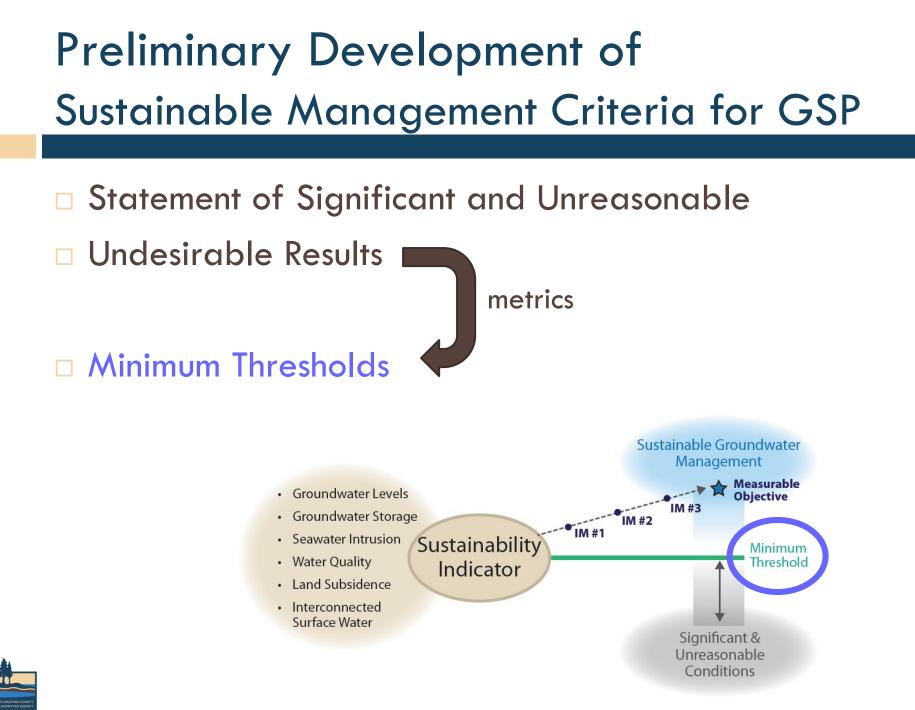
More flexibility:

Land subsidence exceeding threshold rates that are higher in undeveloped areas than in developed areas

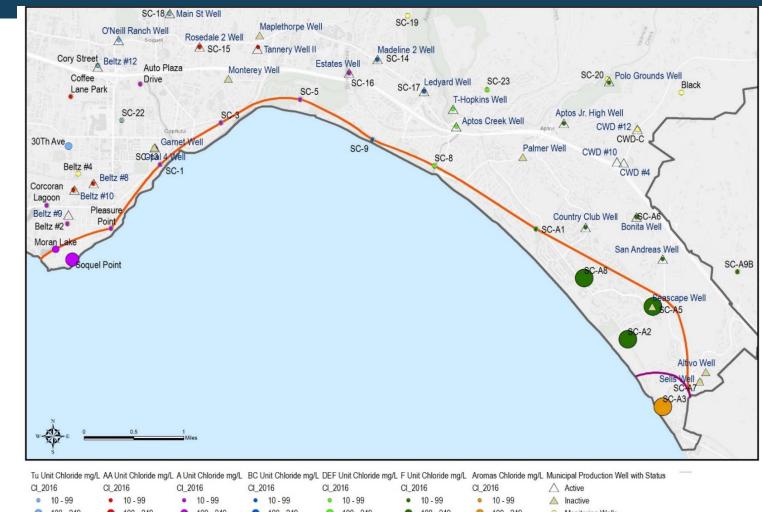
Discussion and Selection of Undesirable Results for Land Subsidence in Purisima AA/Tu unit Subsidence Rate Metric

Proposed Draft

Seawater Intrusion Minimum Thresholds



Proposed Draft Document format


- Recap the initial staff proposal
- Provide a summary of Committee input
- Provide revised technical recommendations to original staff proposals, with a rationale for each specific recommendation

Chloride Isocontours

IU OI	in Onionue mg/L	200	nit onlonde my/L	AUIII	Control the mg/L	000	The official fight	DLI	onit onionue my/L	1 011	it onlonde my/L	AIUII	ias onionue my/L	WUT	icipal i foudcuoli well with Status
CI_20	016	CI_20	016	CI_20	16	CI_20	016	CI_20	016	CI_20	016	CI_2	016	\triangle	Active
•	10 - 99	٠	10 - 99	•	10 - 99	•	10 - 99	٠	10 - 99	•	10 - 99	٠	10 - 99	\triangle	Inactive
0	100 - 249	٠	100 - 249	•	100 - 249	•	100 - 249	•	100 - 249	•	100 - 249	•	100 - 249	0	Monitoring Wells
\bigcirc	250 - 999		250 - 999	•	250 - 999	0	250 - 999	\bigcirc	250 - 999		250 - 999		250 - 999	-	 Proposed Aromas 250 mg/L Isocontour
0	1,000 - 4,999		1,000 - 4,999	•	1,000 - 4,999	•	1,000 - 4,999	0	1,000 - 4,999		1,000 - 4,999	0	1,000 - 4,999	-	Proposed Purisima 250 mg/L Isocontour 2500
C	5,000 - 17,000		5,000 - 17,000		5,000 - 17,000	C	5,000 - 17,000		5,000 - 17,000		5,000 - 17,000	\bigcirc	5,000 - 17,000	_	Santa Cruz Mid-County Basin

Protective Elevations as a Proxy for Seawater Intrusion

Coastal Monitoring Well	Protective Elevation (feet mean seal level)
Moran Lake Medium	5
Soquel Point Medium	6
Pleasure Point Medium	6.1
SC-1A	6.2
SC-3A	10
SC-5A	13
SC-9C	10
SC-8D	10
SC-A1B	3
SC-A8A	6
SC-A2A	3
SC-A3A	3

