Mid-County Basin Groundwater Hydrology and Management

Presented on July 8, 2014 to Mid-County Groundwater Stakeholder Advisory Group Santa Cruz County

HydroMetrics WRI Introduction

- Consulting groundwater hydrologist for Soquel Creek Water District (SqCWD) since 2005
- Lead consultant on Basin Management Technical Study for Central Water District (CWD) funded by state grant

Outline

- Existing data and analyses for groundwater management
 - Basin hydrogeology
 - Seawater intrusion and basin overdraft
 - SqCWD Pumping plans
 - Drought conditions
 - Streamflow and shallow water levels
 - Well Master Plan effects on private wells
 - CWD groundwater model

Levels of Information

- Collected Data
- Hydrogeologic Interpretation
- Calculated or Modeled Estimates
- Information to Refine

Basin Hydrogeology

Data: Geologic and Geophysical Logs

Interpreted: Basin Geologic Outcrops

Punsima Glenwood Synch

Purisima

Irabb, E.E., 1997 (Undifferentiated Purisima/Glenwood Syncline and coastal terrace deposits)

Interpreted: Basin Geologic Cross Section

Data: Groundwater Level Monitoring

etrics_{WBI}

Historical Record: Monthly measurements with airline or sounder Ongoing Record: Every 15 minutes Checked with sounder quarterly

Data: Wells Monitored for Basin Management

- Soquel Creek Water District production and monitoring wells
- Central Water District production and monitoring wells
- City of Santa Cruz production and monitoring wells
- ~30 private wells monitored by Santa Cruz County
- Wells monitored by Pajaro Valley Water Management Agency

rics_{WRI}

Seawater Intrusion and Basin Overdraft

Data: Coastal Monitoring Wells

Hydro

Data: Monitoring Well Sampling Equipment

Data: Coastal Well Chloride Concentrations

etrics

Interpreted: Seawater Intrusion in Aromas

Deepest Monitoring Wells (A Screen) Installed Below Salt Interface

Interpreted: Seawater Intrusion in Purisima

Refinement: Geophysics Studies

Estimated: Protective Elevations to Stop Seawater Intrusion in Aromas

Estimated: Protective Elevations to Prevent Seawater Intrusion in Purisima

Current Levels vs. Protective Elevations

Refinement: Use Logger Data

• Calculate More Accurate Annual Averages to Compare to Protective Elevations

Soquel Creek Water District Pumping Plans

SqCWD Planned Pumping Reductions

- SqCWD will <u>adaptively manage</u> pumping to raise and maintain groundwater levels to protective elevations and prevent seawater intrusion
- SqCWD plans pumping reductions to eliminate long-term overdraft based on water balance:

SqCWD Long-Term Consumptive Use= Recharge MINUS Protective Outflow to Ocean MINUS Outflow to Pajaro Valley MINUS non-SqCWD Consumptive Use

Estimated: Recharge Using PRMS Model

Estimated: Protective Outflow to Ocean

Hydro

Estimated: Flow to Pajaro Valley

Data and Estimated: Non-SqCWD Use

etrics_{WRI}

Estimated: Non-Ag Water Use Factors

Land Use	AFY/	Source			
Residential/Accommodations					
Urban/Suburban	0.39-0.50	Faler (1992) Wolcott (1999)			
High Urban	0.43	Faler (1992) – avg of SFR and duplex			
Mountain/Rural	0.44-1.00	Wolcott (1999) – Pingree (1997)			
On Agricultural Parcel	0.39	Same as urban			
Mobile Park	0.12	Faler (1992)			
Visitor Accommodations	1.53	50 gpd/ppl			
Small Water Systems	0.44	Wolcott (1999)			
Со	mmercial				
Public/Community Facility	1.00	Faler (1992)			
Service	0.50	Estimate			

Estimated: Ag/Irrigation Water Use Factors

Туре	AFY/ acre	Source	
Truck	2.00	Faler (1992), San Andreas Mutual	
Apple	0.23	CWD Usage 2010-11 (little water applied to established trees)	
Vineyards	0.40	CWD Usage 2010-11 (little water applied to established vines)	
Pasture	2.0	DWR, Faler (1992), adjusted for warm season only	
Golf	1.93	Faler (1992)	
Fields	1.71	Faler (1992)	
Park	1.0	Faler (1992), adjusted for 60% of parcel irrigated, includes urban open space	
Bamboo	0.43	CWD Usage 2010-11	
Citrus	0.23	Same as apple	
Egg Ranch	2.70	AFY/parcel, CWD Usage 2010-11	
Horses	3.00	AFY/parcel, estimate for parcels with >10 horses	

Other Estimates of Water Use

- PVWMA Study of Aromas WD, Central WD, San Andreas Mutual: 0.47-0.73 AFY/parcel
- San Lorenzo Valley mountain residential: 0.2 AFY/parcel
- Small horse properties: 1 AFY/parcel (Ricker, 2014)

Data: SqCWD Pumping Reduced Last 5 Years

Refinement: Groundwater Model

- Expand CWD groundwater model to Purisima area
- Evaluate pumping plans such as recovery times
- Evaluate water balance components such as outflows
- Evaluate supplemental supply options

Drought Conditions

Data: 3rd Consecutive Low Rainfall Year

 Estimated Recharge last 3 years 16% of Average for WY 1984-2009 WY 2011-2012 Santa Cruz rainfall estimated based on De Laveaga Stn WY 2014 through May Hvdro

etrics_{WBI}

Data: Soquel Creek Streamflow and Shallow Groundwater

Upstream

Monitoring to Interpret Pumping Effects

Interpreted: Losing Reach of Soquel Creek

Pumping Effects at Private Wells

Data: Private Well Monitoring and Mitigation

- Monitoring private wells near new SqCWD pumping for pumping effects
 - 13 private/mutual wells enrolled near Polo Grounds well
 - 8 private wells enrolled near O'Neill Ranch well

Estimated: Pumping Effects on Private Wells Evaluated by CWD Model

2017 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037 2039 2041

Data Collected

- Geologic and geophysical logs
- Groundwater levels
- Groundwater quality
- Water agency use
- Water use of some small water systems
- Rainfall
- Soquel Creek stream water levels and shallow groundwater levels
- Private well water levels and use for municipal pumping effects

Hydrogeologic Interpretation

- Basin geology (Hydrostratigraphy)
- Groundwater elevation contour maps
- Seawater intrusion salt interface
- Surface water-groundwater interaction on Soquel Creek
- Pumping effects on private wells

Calculated or Modeled Estimates

- Protective Elevations coastal groundwater levels to protect basin from seawater intrusion
- Areal recharge
- Protective outflow to ocean
- Flow to Pajaro Valley
- Water use of some small water systems
- Water use of private pumpers
- Effects of potential pumping re-distribution by CWD

Information Refinements

- Geophysics studies to locate seawater intrusion salt interface
- Calculate more accurate average levels from groundwater level logger data for comparison with protective elevations
- Expand CWD model to cover Purisima

Q & A

