Table of Contents

EXE	CUTIVI	E SUMMARY (ES)	ES-1
1	INTROI	DUCTION	1-2
1.1	Purpose	e of the Groundwater Sustainability Plan	1-2
1.2	-	ability Goal	
1.3		Information	
	1.3.1 1.3.2 1.3.3	Organization and Management of the Santa Cruz Mid-County Groundwater Ag Legal Authority of the Santa Cruz Mid-County Groundwater Agency Estimated Cost of Implementing the GSP and the MGA's Approach to Meet Co	ency1-6 1-8
1.4	Member	Agency Descriptions	
	1.4.1 1.4.2 1.4.3 1.4.4	Soquel Creek Water District City of Santa Cruz Water Department Central Water District Santa Cruz County	1-9 1-10 1-10
1.5	Private '	Well Owner Representation	1-11
1.6	GSP Or	ganization	1-11
	1.6.1	Groundwater Sustainability Plan Organization	1-11
2	PLAN A	AREA AND BASIN SETTING	2-I
2.1		tion of Plan Area	
	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Summary of Jurisdictional Area and Other Features	2-2 2-18 2-25 2-34
2.2		etting	
	2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	Basin Boundaries Climate Hydrogeologic Conceptual Model Current and Historical Groundwater Conditions Water Budget Management Areas	2-63 2-65 2-66 2-91
3	SUSTA	INABILITY MANAGEMENT CRITERIA	3-I
3.1	Sustain	ability Goal	3-1
3.2	Sustain	able Management Criteria	3-1
	3.2.1	Process of Developing Sustainable Management Criteria	3-3
3.3	Monitor	ing Network	3-3
	3.3.1 3.3.2 3.3.3 3.3.4	Description of Monitoring Networks	3-24 3-28

3.4	Chronic	: Lowering of Groundwater Levels Sustainable Management Criteria	3-47
	3.4.1	Undesirable Results - Chronic Lowering of Groundwater Levels	3-47
	3.4.2	Minimum Thresholds - Chronic Lowering of Groundwater Levels	3-48
	3.4.3	Measurable Objectives - Chronic Lowering of Groundwater Levels	3-55
3.5	Reducti	on of Groundwater in Storage Sustainable Management Criteria	3-55
	3.5.1	Undesirable Results - Reduction of Groundwater in Storage	3-55
	3.5.2	Minimum Thresholds - Reduction of Groundwater in Storage	3-58
	3.5.3	Measurable Objectives - Reduction of Groundwater Storage	3-61
3.6	Seawate	er Intrusion Sustainable Management Criteria	3-63
	3.6.1	Undesirable Results - Seawater Intrusion	3-63
	3.6.2	Minimum Thresholds - Seawater Intrusion	3-68
	3.6.3	Measurable Objectives - Seawater Intrusion	3-80
3.7	Degrade	ed Groundwater Quality Sustainable Management Criteria	3-85
	3.7.1	Undesirable Results - Degraded Groundwater Quality	3-85
	3.7.2	Minimum Thresholds - Degraded Groundwater Quality	3-86
	3.7.3	Measurable Objectives - Degraded Groundwater Quality	3-90
3.8	Land Su	ubsidence Sustainable Management Criteria	3-95
	3.8.1	Undesirable Results - Land Subsidence	3-95
	3.8.2	Minimum Thresholds - Land Subsidence	3-95
	3.8.3	Measurable Objectives - Land Subsidence	3-95
3.9	Depletion	on of Interconnected Surface Water Sustainable Management Criteria.	3-95
	3.9.1	Undesirable Results - Depletion of Interconnected Surface Water	3-96
	3.9.2	Minimum Thresholds - Depletion of Interconnected Surface Water	3-99
	3.9.3	Measurable Objectives - Depletion of Interconnected Surface Water	3-104
4	PROJE	CTS AND MANAGEMENT ACTIONS	4-1
4.1	Baselin	e Projects and Management Actions (Group 1)1	4-5
	4.1.1	Water Conservation and Demand Management	
	4.1.2	Planning and Redistribution of Municipal Groundwater Pumping	
4.2	Projects	s and Management Actions Planned to Reach Sustainability (Group 2)	
	4.2.1	Pure Water Soquel	
	4.2.2	Aquifer Storage and Recovery	
	4.2.3	Water Transfers / In Lieu Groundwater Recharge	
	4.2.4	Distributed Storm Water Managed Aquifer Recharge (DSWMAR)	
4.3	Identifie	ed Projects and Management Actions That May Be Evaluated in the Fu	ture
	(Group	3)	4-31
	4.3.1	Recycled Water - Groundwater Replenishment and Reuse	4-31
	4.3.2	Recycled Water – Surface Water (Reservoir) Augmentation	
	4.3.3	Recycled Water – Direct Potable Reuse	
	4.3.4	Groundwater Pumping Curtailment and/or Restrictions	
	4.3.5	Local Desalination	
	436	Regional Desalination	4-37

5	PLAN	IMPLEMENTATION	5-1
5.1	Estimat	te of GSP Implementation Costs	5-1
	5.1.1	Estimate of Ongoing Costs by Major Category	5-1
	5.1.2	Activities of the MGA Member Agencies	5-8
	5.1.3	Total Estimated Implementation Costs Through 2040	5-10
	5.1.4	Funding sources and mechanisms	5-11
5.2	Schedu	lle for Implementation	5-12
	5.2.1	Projects and Management Actions	5-13
5.3	Annual	Reporting	5-13
5.4	Periodi	c (5-Year) Evaluations	5-15
6	REFE	RENCES AND TECHNICAL STUDIES	6-1
7	ACRO	NYMS	7-1
8	GLOS	SARY	8-1
API	PENDIC	ES	APP-1

Figures

Figure 1-1. Basin Location Map	
Figure 1-2. Sustainability Indicators	1-4
Figure 2-1. Area Covered by the MGA's Groundwater Sustainability PlanNeighboring Groundwater Basins	2-3
Figure 2-2. Jurisdictional Boundaries and Census Designated Places in or near the Santa Cruz Mid-Co Groundwater Basin	ounty 2-7
Figure 2-3. Adjudicated Areas, Other Agencies within the Basin, and Areas Covered by an Alternative Plan	2-8
Figure 2-4. Jurisdictional Boundaries of Federal or State Lands	2-9
Figure 2-5. Existing Land Use Designations	. 2-14
Figure 2-6. Well Density per Square Mile	2-17
Figure 2-7. Basin Land Uses	. 2-28
Figure 2-8. Agricultural Land Utilization within the Santa Cruz Mid-County Basin	. 2-29
Figure 2-9. Average Annual Basin Groundwater Production by User Type	2-31
Figure 2-10. Percentage of Time Surface Water and Groundwater are Connected (Water Years 1985-	
2015)	2-49
Figure 2-11. Locations of Beneficial Users in the Santa Cruz Mid-County Basin	. 2-53
Figure 2-12. Santa Cruz Mid-County Basin Modification Rationale	2-64
Figure 2-13. Santa Cruz Mid-County Basin Conceptual Model	. 2-67
Figure 2-14. Basin Topography	. 2-69
Figure 2-15. Basin Soils	2-71
Figure 2-16. Basin Surface Geology	2-74
Figure 2-17. Coastal Groundwater Elevations Compared with Historical Basin Pumping (1985-2015)	2-77
Figure 2-18. Aquifer and Aquitard Distribution Across the Basin	2-80
Figure 2-19. Hydrostratigraphic Cross-Section, A – A'	2-81
Figure 2-20. Hydrostratigraphic Cross-Section, B – B'	. 2-82
Figure 2-21. Significant Surface Water Bodies	. 2-84
Figure 2-22. Groundwater Recharge Zone	. 2-88
Figure 2-23. Local and Imported Water	. 2-89
Figure 2-24. Groundwater Elevation Contours in Purisima A-Unit, Fall 2005	. 2-92
Figure 2-25. Groundwater Elevation Contours in Purisima BC- Unit, Fall 2005	. 2-93
Figure 2-26. Groundwater Elevation Contours in Aromas Red Sands and Pursima F-Unit, Fall 2005	
Figure 2-27. Groundwater Elevations in Tu-Unit, Fall 2016	
Figure 2-28. Groundwater Elevation Contours in Purisima A and AA-Unit, Fall 2016	. 2-97
Figure 2-29. Groundwater Elevation Contours in Purisima BC-Unit, Fall 2016	

Figure 2-30.	Groundwater Elevation Contours in Purisima DEF/F-Unit, Fall 2016	. 2-100
Figure 2-31.	Groundwater Elevation Contours in the Aromas Area, Fall 2016	. 2-101
Figure 2-32.	2012-2016 Groundwater Level Trends	. 2-103
Figure 2-33.	Location of Coastal Monitoring Wells	. 2-105
Figure 2-34.	Cumulative Change in Groundwater in Storage	. 2-108
Figure 2-35.	Water Year 2018 Chloride Concentrations	. 2-109
Figure 2-36.	. Hydrograph and Chemograph of Moran Lake Medium Well (Montgomery & Associates, 2	2019)
	Overlain by Hydrograph and Inset Chemograph of Beltz #2 Well (Johnson et al., 2004)	. 2-111
Figure 2-37.	Water Year 2017 Risk of Seawater Intrusion into Pumped Aquifer Units Based on	
	Groundwater Levels and SkyTEM Data on Shallowest Aquifer Unit with Salty Water Just	
	Offshore	. 2-112
Figure 2-38.	Known Contaminant Locations	. 2-116
Figure 2-39.	Location of Continuous GPS Stations near the Santa Cruz Mid-County Basin	. 2-121
Figure 2-40.	P212 Larkin Valley CGSP Station Daily Position	. 2-122
Figure 2-41.	P214 Corralitos CGSP Station Daily Position	. 2-123
Figure 2-42.	. Hydrologic Process Simulated by the Precipitation-Runoff Modeling Systems (PRMS)	. 2-125
Figure 2-43.	Differences Between Purisima and Aromas Connection to Groundwater	. 2-127
Figure 2-44.	Simulated Minimum Monthly Flows from Moores Gulch to Bates Creek	. 2-127
Figure 2-45.	Simulated Minimum Monthly Flows Downstream from Bates Creek	. 2-128
Figure 2-46.	Areas of Concentrated Groundwater Pumping along Soquel Creek	. 2-129
Figure 2-47.	Conceptual Connections between Soquel Creek, Alluvium, and Underlying Aquifers	. 2-130
Figure 2-48.	. Hydrographs for Main Street Monitoring Wells Compared to Monthly Main Street Pumpin	ıg,
	Creek Flow and Precipitation	. 2-131
Figure 2-49.	Stream Habitat in the Santa Cruz Mid-County Basin	. 2-133
Figure 2-50.	Wetland and Vegetation Types according to the Natural Communities Commonly Associ	ated
	with Groundwater Dataset	. 2-135
Figure 2-51.	Distribution of Species throughout the Santa Cruz Mid-County Basin according to the	
	California Natural Diversity Database	. 2-136
Figure 2-52.	GSFLOW Model Domain	. 2-140
Figure 2-53.	Groundwater Budget Subareas	. 2-145
Figure 2-54.	Apportionment of Precipitation in Santa Cruz Mid-County Basin Over the Historical	
	Period	. 2-149
Figure 2-55.	Santa Cruz Mid-County Basin Historical Surface Water Budget	. 2-151
Figure 2-56.	Santa Cruz Mid-County Basin Watersheds	. 2-153
Figure 2-57.	Soquel Creek Watershed Historical Budget	. 2-154
Figure 2-58.	Aptos Creek Watershed Historical Budget	. 2-155
Figure 2-59.	Corralitos Creek Watershed Historical Budget	. 2-156
Figure 2-60.	. Santa Cruz Mid-County Basin Historical Annual Groundwater Budget (1985 – 2015)	. 2-160
Figure 2-61.	Offshore Groundwater Flow to Santa Cruz Mid-County Basin by Model Layer	. 2-162
Figure 2-62.	North of Aptos Area Faulting Historical Annual Groundwater Budget (1985 – 2015)	. 2-165
Figure 2-63.	South of Aptos Area Faulting Historical Annual Groundwater Budget (1985 – 2015)	. 2-168

_	Santa Cruz Mid-County Basin Current Annual Surface Water Budget	
=	Santa Cruz Mid-County Basin Current Annual Groundwater Budget (2010 – 2015)	
=	Comparison of Historical, Current, and Projected GSP Groundwater Inflows and Outlflow	
	(acre-feet per year)	
•	North of Aptos Area Faulting Current Annual Groundwater Budget (2010 – 2015)	
-	South of Aptos Area Faulting Current Annual Groundwater Budget (2010 – 2015)	
	Projected Baseline vs. Projected GSP Implementation Net Groundwater Pumping in the	
	Cruz Mid-County Basin (2016-2039)	
	Projected Baseline vs. Projected GSP Implementation Net Groundwater Pumping in the	
	Cruz Mid-County Basin (2040-2069)	
•	Santa Cruz Mid-County Basin Projected Annual Surface Water Budget (2016 – 2069)	. 2-188
	Effect of Projects and Management Actions on Soquel Creek Watershed Groundwater	
	Contribution (2016 – 2069)	. 2-189
_	Santa Cruz Mid-County Basin Projected Baseline Annual Groundwater Budget (2016 –	0.400
	2069)	
•	Santa Cruz Mid-County Basin Projected GSP Implementation Annual Groundwater Budg	
	(2016 – 2069)	
-	North of Aptos Area Faulting Projected Baseline Annual Groundwater Budget (2016 – 20	169) 2-
	196	
	North of Aptos Area Faulting Projected GSP Implementation Annual Groundwater Budge	
	(2016 – 2069)	
-	South of Aptos Area Faulting Projected Baseline Annual Groundwater Budget (2016 – 2000)	J69) Z-
	South of Aptos Area Faulting Projected GSP Implementation Annual Groundwater Budg	et
_	(2016 – 2069)	
Figure 3-1. L	ocation of Existing Basin-Wide Wells Used for Groundwater Level Monitoring	3-7
Figure 3-2. L	ocation of Basin-Wide Wells Used for Groundwater Quality Monitoring	3-14
-	ocation of Basin Streamflow Gauges	
Figure 3-4. L	ocation of Continuous GPS Stations near the Santa Cruz Mid-County Basin	3-23
Figure 3-5. C	Chronic Lowering of Groundwater Level Representative Monitoring Network	3-31
-	Reduction of Groundwater in Storage Representative Monitoring Network	
-	Seawater Intrusion Representative Monitoring Network	
	Pegraded Groundwater Quality Representative Monitoring Network	
-	Depletion of Interconnected Surface Water Existing Representative Monitoring Network	
=	Groundwater Level and Streamflow Monitoring Data Gaps	
-	Minumum Thresholds for All Sustainability Indicators with Groundwater Elevation Minimu	
	Thresholds	
-	250 mg/L Chloride Isocontour for the Aromas and Pursima Aquifers	
Figure 3-13.	Protective Groundwater Elevations at Coastal Monitoring Wells	3-76

Figure 3-14. Seawater Intrusion within the Pajaro Valley (Source: PVWMA)	3-78
Figure 3-15. Simulated Contributions to Streamflow for Soquel Creek Watershed with and without	t Historical
Pumping	3-98
Figure 3-16. Main Street Shallow Monitoring Well Hydrograph with Minimum Threshold and Meas	sureable
Objective	3-102
Figure 4-1. Five Year Averages of Model Simulated Groundwater Elevations at Coastal Monitorir	•
Purisima A and BC Units	4-11
Figure 4-2. Five Year Averages of Model Simulated Groundwater Elevations at Coastal Monitoring	ng Wells in
Purisima F and Aromas Red Sands Units	4-12
Figure 4-3. Monthly Model Simulated Groundwater Elevations in Shallow Wells along Soquel Cre	ek4-13
Figure 4-4. Five Year Averages of Groundwater Elevations at Purisima AA and A Units	4-20
Figure 4-5. Five Year Averages of Groundwater Elevations at Coastal Monitoring Wells in Tu and	l Purisima
AA and A Units	4-26
Figure 5-1. GSP Implementation Schedule	5-12
Figure 5-2. Member Agency Projects and Management Actions Estimated Timeline	5-13

Tables

Table 2-1. Groundwater Dependent Species Identified for Priority Management	2-47
Table 2-2. Summary of Public Outreach and Engagment Opportunities	2-61
Table 2-3. Average Santa Cruz Co-op Temperature and Precipitation	2-65
Table 2-4. Proportion of Total Basin Extractions by Aquifer and Use Type	2-83
Table 2-5. Groundwater Level Averages Calculated from Logger Data at Coastal Monitoring We	lls 2-106
Table 2-6. Representative Aquifer Historic Groundwater Level Declines	2-119
Table 2-7. All Species Identified using California Natural Diversity Database and National Wetla	nds
Inventory and Considered for Management with Potential for Range inside Basin Bo	oundaries 2-
Table 2-8. Non-Salmonid Aquatic Species Identified in Mid-County Streams during Field Sampli	ng
Program, 1996-2017	2-138
Table 2-9. Summary of Water Budget Component Data Sources	2-141
Table 2-10. Percentage Distribution of Historical Precipitation in Santa Cruz Mid-County Basin	2-148
Table 2-11. Santa Cruz Mid-County Basin Historical Surface Water Budget	2-150
Table 2-12. Santa Cruz Mid-County Basin Historical Groundwater Budget Summary (1985 – 20	15) 2-157
Table 2-13. Santa Cruz Mid-County Basin Historical Groundwater Budget by Aquifer Summary	(1985 –
2015)	2-161
Table 2-14. North of Aptos Area Faulting Historical Groundwater Water Budget Summary (1985 164	– 2015)2-
Table 2-15. South of Aptos Area Faulting Historical Groundwater Water Budget Summary (1985 167	– 2015) . 2-
Table 2-16. Percentage Distribution of Current Precipitation in Santa Cruz Mid-County Basin	2-169
Table 2-17. Santa Cruz Mid-County Basin Current Surface Water Budget	2-170
Table 2-18. Santa Cruz Mid-County Basin Current Groundwater Budget Summary (2010-2015).	2-173
Table 2-19. Santa Cruz Mid-County Basin Current Groundwater Budget by Aquifer Summary (19	985 –
2015)	2-176
Table 2-20. North of Aptos Area Faulting Current Groundwater Budget Summary (2010 – 2015)	2-177
Table 2-21. South of Aptos Area Faulting Current Groundwater Budget Summary (2010 – 2015)	2-179
Table 2-22. Percentage Distribution of Projected Precipitation in Santa Cruz Mid-County Basin	2-186
Table 2-23. Santa Cruz Mid-County Basin Projected GSP Implementation Surface Water Budge	t 2-187
Table 2-24. Santa Cruz Mid-County Basin Projected Groundwater Budget Summary (2016 – 20	69) 2-191
Table 2-25. North of Aptos Area Faulting Projected Groundwater Water Budget Summary (2016 195	– 2069) . 2-
Table 2-26. South of Aptos Area Faulting Projected Groundwater Water Budget Summary (2016)	5 – 2069).2-
Table 2-27. Projected Sustainable Yield	2-203

Table 3-1. Applicable Sustainability Indicators in the Santa Cruz Mid-County Basin	3-4
Table 3-2. Summary of MGA Member Agency Monitoring Well Network for Groundwater Levels	3-5
Table 3-3. Monitoring Wells for Groundwater Levels in the Santa Cruz Mid-County Basin	3-8
Table 3-4. Summary of MGA Member Agency Monitoring Well Network for Groundwater Quality	3-13
Table 3-5. Monitoring Wells for Groundwater Quality in the Santa Cruz Mid-County Basin	3-15
Table 3-6. Streamflow Gauges in the Santa Cruz Mid-County Basin	3-20
Table 3-7. Representative Monitoring Points for Chronic Lowering of Groundwater Levels	3-30
Table 3-8. Representative Monitoring Points for Seawater Intrusion	3-35
Table 3-9. Representative Monitoring Points for Degraded Groundwater Quality	3-39
Table 3-11. Representative Monitoring Points for Depletion of Interconnected Surface Water	3-41
Table 3-12. Summary of Additional Monitoring Wells to Fill Groundwater Level Data Gaps	3-44
Table 3-13. Minimum Thresholds and Measurable Objectives for Chronic Lowering of Groundwater	Level
Representative Monitoring Points	3-49
Table 3-14. Minimum Thresholds and Measurable Objectives for Reduction of Groundwater of Stora	age 3-58
Table 3-15. Interim Milestones for Reduction of Groundwater of Storage	3-62
Table 3-16. Summary of Chloride Concentrations in Monitoring and Production Wells at the Coast	3-63
Table 3-17. Chloride Minimum Thresholds and Measurable Objectives for Coastal and Inland Wells	3-73
Table 3-18. Minimum Thresholds and Measurable Objectives for Groundwater Elevations Used as F	Proxies
at Seawater Intrusion Representative Monitoring Points	3-75
Table 3-19. Interim Mllestones for Seawater Intrusion Groundwater Elevation Proxies	
Table 3-20. Constituents of Concern with Minimum Thresholds	3-87
Table 3-21. Measurable Objectives for Degradation of Groundwater Quality	3-91
Table 3-22. Minimum Thresholds and Measurable Objectives for Representative Monitoring Points to	or
Depletion of Interconnected Surface Water	3-101
Table 3-23. Interim Milestones for Depletion of Interconnected Surface Water Groundwater Elevation	
Proxies	3-105
Table 4-1. Projects and Management Actions (Groups 1 and 2)	4-3
Table 4-2. Identified Potential Future Projects and Management Actions (Group 3)	4-4
Table 5-1. Estimated Agency Costs by Major Category	
Table 5-2. Member Agency Groundwater Elevation and Quality Monitoring Annual Costs in Basin	5-8
Table 5-3. Member Agency Streamflow, Precipitation, and Fish Monitoring Annual Costs in Basin	
Table 5-4. Member Agency Projects	
Table 5-5. Groundwater Sustainability Plan Estimated Implementation Cost Through 2040	5-10

Appendices

Appendix A – Basin Point of Contact and Mailing Address	APP-2
Appendix B – Summary of Public Comments on the Draft GSP and Responses	APP-4
Appendix C – Summary List of Public Meetings and Outreach	APP-8
Appendix 1-A Santa Cruz Mid-County Groundwater Agency Joint Exercise of Powers Agreement	APP-10
Appendix 2-A. Communication and Engagement Plan	APP-28
Appendix 2-B. Santa Cruz Mid-County Basin Groundwater Flow Model: Water Use Estimates and Return F Implementation (Task 2) Memorandum	
Appendix 2-C. Municipal Return Flow Memorandum	APP-68
Appendix 2-D. Soquel-Aptos Groundwater Flow Model: Subsurface Model (Task 3) Memorandum	APP-82
Appendix 2-E. Santa Cruz Mid-County Basin Conceptual Model Update Memorandum	APP-128
Appendix 2-F. Santa Cruz Mid-County Basin Model Integration and Calibration	.APP-140
Appendix 2-G. Santa Cruz Mid-County Groundwater Flow Model: Future Climate for Model Simulations (Ta Memorandum	,
Appendix 2-H. Comparison of Climate Change Scenarios Memorandum	.APP-348
Appendix 2-I. Implementation and Analysis of Projects and Management Actions in Model Scenarios as Pa Groundwater Sustainability Plan Development	
Appendix 3-A. Technical Approach for Determining Groundwater Elevation Minimum Threshold for Chronic of Groundwater Levels in Representative Monitoring Wells	•
Appendix 3-B. Hydrographs of Representative Monitoring Points for Chronic Lowering of Groundwater Levels	APP-444
Appendix 3-C. Summary of Federal, State, and Local Water Quality Regulations	.APP-462
Appendix 3-D. Hydrographs of Representative Monitoring Points for Depletion of Interconnected Surface Water	.APP-476
Appendix 5-A. Santa Cruz Mid-County Groundwater Agency Evaluation of Private Pumper Funding Mechar Fee Criteria, Raftelis, May 2019	nisms and