Optimization Study Groundwater Modeling Santa Cruz Mid-County Basin

Santa Cruz Mid-County Groundwater Agency Board of Directors Agenda Item 6.1 June 20, 2024

Outline

- Planned Projects in Groundwater Sustainability Plan (GSP)
- Groundwater Modeling Role for Optimization Study
- Alternative Tracks and Alternative to Include in GSP Periodic Evaluation
- Alternatives Selected for Further Evaluation
- Summarize Results of Selected Alternatives

Planned Projects in GSP

SSOCIATES

Transfers from City to District

Optimization Study using Groundwater Modeling

- <u>Study Objective</u>: Optimize **Planned Projects** for Santa Cruz Mid-County Groundwater Basin to improve regional water supply reliability
- Non-Basin supplemental supply project options in City Water Supply Augmentation Implementation Plan (WSAIP) not included in optimization
- Use groundwater modeling to identify alternatives that improve water supply reliability, are feasible and achieve Basin sustainability
- Hydraulic modeling informs infrastructure needs
- Select alternatives for further evaluation including:
 - Cost estimates
 - Permitting requirements and other local impacts
 - Water quality

Alternatives Selected from Tracks Defined by Infrastructure Needs

Track	Description	Pure Water Soquel (PWS)	City ASR	Transfers
1	Baseline Projects with transfers	1,500 AFY (1.3 MGD) 3 existing SWIP wells	4 existing Beltz wells	Winter (Nov-Apr): City to District (limited) Summer (May-Oct): District to City Existing O'Neill intertie capacity
2	Expand City's ASR	1,500 AFY (1.3 MGD) 3 existing SWIP wells	4 existing Beltz wells 1 New ASR well	Summer (May-Oct): District to City Expanded O'Neill intertie capacity
S 3	Optimize existing PWS capacity	1,500 AFY (1.3 MGD) 3 existing SWIP wells 1 new injection & extraction well	4 existing Beltz wells	Summer (May-Oct): District to City Expanded O'Neill intertie capacity District Demand Scenarios (Low & High)
\ 4	Expand PWS treatment capacity	1,900 To 2,100 AFY (1.7 to 1.9 MGD) 1 new injection well 1-2 new extraction wells	4 existing Beltz wells	Summer (May-Oct): District to City Expanded O'Neill intertie capacity
✓ 5A/B	Expand City's ASR and PWS treatment capacity	1,900 To 2,100 AFY (1.7 to 1.9 MGD) 1-2 new injection wells Up to 1 new extraction well	4 existing Beltz wells 2-3 new ASR wells	Summer (May-Oct): District to City Expanded O'Neill intertie capacity

AFY = acre-feet per year MGD = million gallons per day Groundwater modeling indicates track alternatives summarized above can be feasible and sustainable

Baseline Projects with Transfers to be Used for GSP Periodic Evaluation

Used for All Selected Alternatives

	Optimization Study	GSP	
Climate	Catalog and City Realization 1270	Catalog	
City Demand	2.9 Billion Gallons per Year (BGY) (2045)	2.6 BGY (2016-2018)	
City Supply Model	SCWSM with Habitat Conservation Plan (HCP) flow rules	Confluence with assumed aquifer constraints	
District Demand	3,900 AFY/1.3 BGY (Max in Urban Water Management Plan)		

Basin groundwater model updated to incorporate PWS and ASR aquifer test data MONTGOMERY <u>Alternative Track 1 to be presented</u> <u>in GSP Periodic Evaluation</u>

	Optimization Study	GSP		
City ASR	4 existing Be	ltz wells*		
PWS	1,500 AFY at 3 SWIP wells*			
City to District Transfers	Limited by HCP (average 6 AFY)	Described but not modeled		
District to City Transfers	Limited to existing capacity of O'Neill Intertie (1,000 gpm)	Not described or modeled		

* Well capacities updated for Optimization Study

Alternative Track 1: Transfers with No Upgrades has Supply Gap for City

Simulation of Alternative 1 under Catalog Climate will be presented in GSP Periodic Evaluation

Baseline with Transfers:

ONTGOMERY

- Peak Drought Year:
 - ✓ City Supply Gap = 1,110 million gallons (MG) / 3,400 AF
 - ✓ ASR Supply = 425 MG / 1,300 AF
 - ✓ Transfers from District to City = 260 MG / 800 AFY
 - ✓ Remaining Gap = 425 MG / 1,300 AF

Additional alternative tracks evaluate reducing the supply gap with project expansion

Optimization Guided by Machine Learning

- Thousands of groundwater model simulations run
- 3 layer combined neural network/random forest algorithm learned best over time

Simulated New Wells for Expanded ASR and PWS Identified based on Machine Learning

<u>New PWS injection well(s)</u> Track 5A: AA/Tu Track 5B: A/AA & AA/Tu

<u>New ASR wells</u> Track 2: A/AA Track 5A: AA/Tu Track 5B: A/AA & AA/Tu

Optimization Study Selected Alternatives Summary

Track	Description	Max Annual Demand (MGY)	ASR Max Supply (MGY)	Max Transfer District to City (MGY)	Remaining Supply Gap (MGY)	% Years with Supply Gap
1	GSP projects with transfers using existing infrastructure	1,110	425	260	425	40%
2	Expand City's ASR	1,110	490	330	290	30%
5A	Combination ASR and PWS expansion	1,110	590	520	0	0%
5B	Combination ASR and PWS expansion	1,110	710	400	0	0%

Table based on Catalog Climate results

Selected alternatives do not represent specific proposed projects.

Groundwater Sustainability in and Near City Area

Catalog Climate

MONTGOMERY & ASSOCIATES

11

Seawater Intrusion

Groundwater Sustainability in District Area

NTGOMERY

Seawater

Interconnected Surface Water Sustainability

- - - Minimum Threshold

Surface Water Depletion

Interconnected Surface Water Sustainable Management Criteria likely to be re-evaluated by 2030 based on data from new monitoring locations and updated state guidance

Optimization Study Next Steps

For 4 selected alternatives that are projected by groundwater modeling to improve water supply reliability, are feasible and achieve Basin sustainability, further evaluation will include:

- Document infrastructure needs (ASR wells, Intertie improvements)
- Assess travel time requirements for purified water injection
- Water Quality Assessment for transfers
- Economic considerations & Agencies Agreements
- Needs assessment Social, Environmental, Political, Legal

